Addressing Climate Change - II


By Ranil Senanayake

The COP on Climate Change in Paris saw Sri Lanka make pledges on the global stage, that we will be a responsible nation when it came to the issue of climate change. The president has gone on record that we will develop towards a fossil free future. The Sri Lankan position paper issued in at the Climate Change Conference stated this :

"Sri Lanka is a vulnerable island in the face of Climate Change. An increase in the intensity of rainfall, will erode our mountains and create increased flood damage. An increase in the sea level will render much of our productive agricultural lands saline. An increase of ambient temperatures will reduce our agricultural productivity. We are in agreement with the view that an increase of the Carbon Dioxide concentration in our atmosphere will contribute to this vulnerability.

We are aware of the great difference in carbon dioxide that is emitted from biological sources and carbon dioxide emitted from fossil sources. One has sequestered rates measured in thousands of years while the other in millions of years. Yet the cost is still the same. We would request the IPCC to address the relative costs of each.

We are aware that the optimum operating temperature of chlorophyll is at 37 deg C. In a warming world where temperatures will soar well above that, food production will be severely impacted. We would request the IPCC to address responses to this phenomenon.

We are aware that the critical Ecosystem services such as; production of Oxygen, sequestering of Carbon, water cycling and ambient cooling is carried out by the photosynthetic component of biomass. This is being lost at an exponential rate, due to the fact that these Ecosystem Services have not been valued, nor economically recognized. We would request the Intergovernmental Panel on Climate Change ( IPCC) to examine the value of photosynthetic biomass.

Sri Lanka will place her development agenda on a fossil free target and promote an economic recognition of the ecosystem services generated by the photosynthetic biomass. In this way we offer to act in a globally responsible manner as well as to contribute in creating a cushioning effect for the climate extremes that are before us."

In addition to the pledge made by the president, there are three questions raised that question the current status quo regarding carbon trading. The first question suggests that the current system of carbon trading and claims of carbon neutrality may be a scam. To understand the great difference in carbon dioxide that is emitted from biological sources and carbon dioxide emitted from fossil sources, we must look into the history of carbon.

The first question: Carbon

Carbon (C), the fourth most abundant element in the Universe, after hydrogen(H), helium (He), and oxygen (O), is the building block of life. It’s the basic element that anchors all organic substances, from fossil fuels to DNA. On Earth, carbon cycles through the land, ocean, atmosphere, and the Earth’s interior in a major biogeochemical cycle (the circulation of chemical components through the biosphere from or to the lithosphere, atmosphere, and hydrosphere). The global carbon cycle can be divided into two categories: the geological/ancient, which operates over large time scales (millions of years), and the biological/modern, which operates at shorter time scales (days to thousands of years).

The fossil Carbon cycle

The operation of life has been clearly demonstrated to change the chemistry of that atmosphere to what it is today. One of the most active agents of this change were/are the oceanic plankton, photosynthetic microscopic phytoplankton that produce prodigious quantities of oxygen and biomass over time. Oxygen is released to the atmosphere and the biomass is consumed by respiring zooplankton (microscopic marine animals) within a matter of days or weeks. Only small amounts of residual carbon from these plankton settle out to the ocean bottom at any given time, but over long periods of time this process represents a significant removal of carbon from the atmosphere. This slow removal of Carbon from the primary atmosphere into the fossil reservoir, while at the same time creating an atmospheric reservoir of oxygen, had a major effect on the maintenance life on this planet.

A similar process was repeated on the land especially at Devonian times with the huge vegetation mass that covered the earth absorbing Carbon Dioxide and them being mineralized in the lithosphere into coal, effectively removing that volume of carbon from earths atmosphere. The Oxygen released by these early prodigious forests contributed greatly to the chemistry of the current atmosphere.

Life on Earth learnt how to maintain gas and material flows, optimum for the evolution of biodiversity. Carbon Dioxide, although essential to the process of life, was being introduced into the atmosphere by volcanic processes at disruptive levels, throughout geologic history. But the gas has not concentrated in the atmosphere, because it was sequestered by living things and put away out of circulation from the biosphere of living carbon. This store of carbon was fossilized and has been slowly accumulating over the last few hundred million years.

Through these processes, which are still active today, Carbon that enters the Lithosphere is removed completely from the biological cycle and becomes mineralized into pools of oil, coal and gas with ages of 100’s of millions of years.

The modern (biotic) Carbon cycle

The major exchange of carbon with the atmosphere results from photosynthesis and respiration. During the daytime in the growing season, leaves absorb sunlight and take up carbon dioxide from the atmosphere. In the oceans the planktonic cycle operate a similar photosynthetic cycle. Both create biomass. In parallel, plants, animals and substrate microbes consume this carbon as organic matter, transform it in the process of respiration and finally return it as carbon dioxide to the atmosphere.

The global impact of active photosynthetic biomass can be illustrated by the volume of water released into the atmosphere as water vapour. At a water release rate of 100:1, where over 100 molecules of water are released for each molecule of carbon dioxide absorbed by the leaf. The quantity of water released annually into the atmosphere by vegetation is between 5640 - 6280 billion tons.

The carbon from biotic sources and fossil sources ate different. They hav a very different chemical signatures, in the ratio of its 13C to 12C as well as in the quantity of the rare unstable isotope 14C. All carbon that lacks 14C or has a lower 13C/12C ratio does not belong in the modern or biotic cycle. The fluxing movement of biotic carbon happens in cycles of a few days to thousands of years, but always maintain the same isotope ratio.

It is now clear that fossil Carbon and biotic Carbon have extremely different sinks and need to be valued differentially when considering the impact on the global biosphere. Biotic carbon is sequestered or ‘tied up’ for periods of thousands of years, while fossil carbon is sequestered or tied up for periods exceeding tens of millions of years. Using biotic activity like the planning of trees to compensate for the release of fossil Carbon must recognize the cost of burning material that was sequestered for millions of years.

A clear distinction between fossil and biotic energy and a placing of differential values on the two sources, will go a long way to expose thefossil addicted economies and assist ‘developing nations ‘ to avoid the pitfalls. The ‘fossil subsidy’ including the fossil cost of cement production and use, required for the creation and operation of future ‘development’ projects should become cost criteria for acceptance or rejection of future ‘development’ projects.

Further it demonstrates the fallaciousness of the current claims of being ‘Carbon Neutral’ based upon the laundering of fossil carbon though planting trees to make up for it !

Next : The second question.


animated gif
Processing Request
Please Wait...